Enrollment No:	Exam Seat No:	

C. U. SHAH UNIVERSITY

Summer Examination-2016

Subject Name: Electromagnetics

Subject Code: 4TE06ELM1 Branch: B.Tech (EEE,EE)

Semester: 6 Date:06/05/2016 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the follow	wing questions:			(14)
	a)	Electric field intens	~ -			1
	,	(a) scalar	(b) vector		(c) both (a) and (b)	
	b)	Electric displaceme	ent is aquantity	y.		1
	·	(a) scalar	(b) vector	(c) both of th above	e (d) none of the above	
	c)	Which of the follow	wing is not a scalar fie	eld?		1
	ŕ	(a) Displacement of a mosquito in space	(b) Light intensity	(c) Temperat distribution in your classroo	n pressure in a given	
	d)	-	wing is a mathematica	•	<u>e</u>	1
	<i>(L)</i>	(a) grad div	(b) div curl	(c) grad curl	(d) curl grad	-
	e)	Which of the follow	` '	(c) grad carr	(0) 0011 8100	1
	-/	(a) grad div	(b) div grad	(c) curl grad	(d) curl curl	
	f)	Which of these is c	, ,	` ,	,	1
g	,	(a) A X A = $ A ^2$	(b) A X B	$+ \mathbf{B} \mathbf{X} \mathbf{A} = 0$	(c) $A \cdot B \cdot C = B \cdot C \cdot A$	
	g)	The relative permittivity has the following units				
		(a) F/m	(b) m/F	(c) Wb/m	(d) no units	
	h)	Gravitational and electric forces are inversely proportional to the				
		(a) distance	(b)square of distance	(c) mass	(d)square of mass	
	i)	The value of E with	hin the field due to a p	ooint charge car	n be found with the help of	1
		(a) Faraday's laws	(b) Kirchhof		(c) Coulomb's laws	
	j)	At a point may be ounit cross section a	t that point.		passing normally through a	1
		(a) Electric intensit	ty (b) Magnetic	c flux density	(c) Electric flux	

	k)	Electric intensity at any point in an electric field is equal to the at that point. (a) electric flux (b) magnetic flux (c) potential (d) none of the	1			
	1)	density gradient above Law stating force directly proportional to charges and inversely proportional to square of radius is called	1			
	m)	(a) Newton's law (b)coulombs law (c)gauss's law (d)Ohm's law Electric field lines exerting force on a charge are also known as	1			
	n)	(a)force of lines (b)lines of force (c)force lines (d)both a and b Potential difference and potential between two points are	1			
	11)	(a)scalar (b)vector (c)base quantity (d)both a and b quantities quantities	1			
Attemp	t any f	four questions from Q-2 to Q-8				
Q-2	A					
	В	ordinate system. Given three points A(2,-3,1), B(-4,-2,6) and C(1,5,-3), Find i) The Vector from A to C ii) The Unit vector from B to A	(04)			
	C	iii) The distance from B to C. We illustrate this transformation procedure by transforming the vector filed $G = \left(\frac{xz}{y}\right) a_x \text{ into spherical components and variables.}$	(03)			
Q-3	A	Attempt all questions Explain Coulomb's law and deduce the vector form of force equation between two	(14) (07)			
	В	point charges. State Divergence theorem & Write mathematical expression for Divergence theorem	(07)			
Q-4	A B	Attempt all questions An infinitely long, uniform line charge is located at y=3, z=5. If ρ_L = 30 nc/m, Find E at: i) The origin, ii) PB (0,6,1), iii) PC (5,6,1). State and prove the Gauss's law.	(14) (07)			
Q-5	В	Attempt all questions	(07) (14)			
	A	Express Electric flux density due to a point charge Q placed at origin. Hence obtain the relation between <i>D</i> & <i>E</i> .	(07)			
	В	Determine the electric field intensity of an infinite straight line charge carrying uniform line charge density of ρ_L C/m.	(07)			
Q-6	A B	Attempt all questions Explain and derive the boundary conditions for a conductor free space interface What is the relation between magnetic flux density and magnetic field intensity?	(14) (7) (04)			

	C	explain the electric field due to a continuous volume charge distribution with help of sketch.	(03)
Q-7		Attempt all questions	(14)
	A	State and explain Biot-Savart law	(7)
	В	Derive Poisson's and Laplace's equation.	(04)
	C	Explain with sketch Hertzian dipole antenna	(03)
Q-8		Attempt all questions	(14)
	A	Derive the expression for the attenuation constant ,phase constant	(07)
		And intrinsic impedance for a uniform plane wave in a good conductor.	
	В	Explain basic principle of Antenna	(07)